Решение средствами матричного исчисления. Матричный метод решения слау: пример решения с помощью обратной матрицы. Примеры решения системы с помощью обратной матрицы

Данный онлайн калькулятор решает систему линейных уравнений матричным методом. Дается очень подробное решение. Для решения системы линейных уравнений выберите количество переменных. Выбирайте метод вычисления обратной матрицы. Затем введите данные в ячейки и нажимайте на кнопку "Вычислить".

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Матричный метод решения систем линейных уравнений

Рассмотрим следующую систему линейных уравнений:

Учитывая определение обратной матрицы, имеем A −1 A =E , где E - единичная матрица. Следовательно (4) можно записать так:

Таким образом, для решения системы линейных уравнений (1) (или (2)), достаточно умножить обратную к A матрицу на вектор ограничений b .

Примеры решения системы линейных уравнений матричным методом

Пример 1. Решить следующую систему линейных уравнений матричным методом:

Найдем обратную к матрице A методом Жордана-Гаусса. С правой стороны матрицы A запишем единичную матрицу:

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/3,-1/3 соответственно:

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строку 3 со строкой 2, умноженной на -24/51:

Исключим элементы 2-го столбца матрицы выше главной диагонали. Для этого сложим строку 1 со строкой 2, умноженной на -3/17:

Отделяем правую часть матрицы. Полученная матрица является обратной матрицей к A :

Матричный вид записи системы линейных уравнений: Ax=b , где

Вычислим все алгебраические дополнения матрицы A :

,
,
,
,
,

где A ij − алгебраическое дополнение элемента матрицы A , находящиеся на пересечении i -ой строки и j -ого столбца, а Δ − определитель матрицы A .

Используя формулу обратной матрицы, получим:

Назначение сервиса . С помощью данного онлайн-калькулятора вычисляются неизвестные {x 1 , x 2 , ..., x n } в системе уравнений. Решение осуществляется методом обратной матрицы . При этом:
  • вычисляется определитель матрицы A ;
  • через алгебраические дополнения находится обратная матрица A -1 ;
  • осуществляется создание шаблона решения в Excel ;
Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word .

Инструкция . Для получения решения методом обратной матрицы необходимо задать размерность матрицы. Далее в новом диалоговом окне заполнить матрицу A и вектор результатов B .

Напомним, что решением системы линейных уравнений называется всякая совокупность чисел {x 1 , x 2 , ..., x n } , подстановка которых в эту систему вместо соответствующих неизвестных обращает каждое уравнение системы в тождество.
Система линейных алгебраических уравнений обычно записывается как (для 3-х переменных): См. также Решение матричных уравнений .

Алгоритм решения

  1. Вычисляется определитель матрицы A . Если определитель равен нулю, то конец решения. Система имеет бесконечное множество решений.
  2. При определителе отличном от нуля, через алгебраические дополнения находится обратная матрица A -1 .
  3. Вектор решения X ={x 1 , x 2 , ..., x n } получается умножением обратной матрицы на вектор результата B .

Пример №1 . Найти решение системы матричным методом. Запишем матрицу в виде:


Алгебраические дополнения.
A 1,1 = (-1) 1+1
1 2
0 -2
∆ 1,1 = (1 (-2)-0 2) = -2

A 1,2 = (-1) 1+2
3 2
1 -2
∆ 1,2 = -(3 (-2)-1 2) = 8

A 1,3 = (-1) 1+3
3 1
1 0
∆ 1,3 = (3 0-1 1) = -1

A 2,1 = (-1) 2+1
-2 1
0 -2
∆ 2,1 = -(-2 (-2)-0 1) = -4

A 2,2 = (-1) 2+2
2 1
1 -2
∆ 2,2 = (2 (-2)-1 1) = -5

A 2,3 = (-1) 2+3
2 -2
1 0
∆ 2,3 = -(2 0-1 (-2)) = -2

A 3,1 = (-1) 3+1
-2 1
1 2
∆ 3,1 = (-2 2-1 1) = -5

A 3,2 = (-1) 3+2
2 1
3 2
∆ 3,2 = -(2 2-3 1) = -1

·
3
-2
-1

X T = (1,0,1)
x 1 = -21 / -21 = 1
x 2 = 0 / -21 = 0
x 3 = -21 / -21 = 1
Проверка:
2 1+3 0+1 1 = 3
-2 1+1 0+0 1 = -2
1 1+2 0+-2 1 = -1

Пример №2 . Решить СЛАУ методом обратной матрицы.
2 x 1 + 3x 2 + 3x 3 + x 4 = 1
3 x 1 + 5x 2 + 3x 3 + 2x 4 = 2
5 x 1 + 7x 2 + 6x 3 + 2x 4 = 3
4 x 1 + 4x 2 + 3x 3 + x 4 = 4

Запишем матрицу в виде:

Вектор B:
B T = (1,2,3,4)
Главный определитель
Минор для (1,1):

= 5 (6 1-3 2)-7 (3 1-3 2)+4 (3 2-6 2) = -3
Минор для (2,1):

= 3 (6 1-3 2)-7 (3 1-3 1)+4 (3 2-6 1) = 0
Минор для (3,1):

= 3 (3 1-3 2)-5 (3 1-3 1)+4 (3 2-3 1) = 3
Минор для (4,1):

= 3 (3 2-6 2)-5 (3 2-6 1)+7 (3 2-3 1) = 3
Определитель минора
∆ = 2 (-3)-3 0+5 3-4 3 = -3

Пример №4 . Записать систему уравнений в матричной форме и решить с помощью обратной матрицы.
Решение :xls

Пример №5 . Дана система трех линейных уравнений с тремя неизвестными. Требуется: 1) найти ее решение с помощью формул Крамера ; 2) записать систему в матричной форме и решить ее средствами матричного исчисления.
Методические рекомендации . После решения методом Крамера, найдите кнопку "Решение методом обратной матрицы для исходных данных". Вы получите соответствующее решение. Таким образом, данные вновь заполнять не придется.
Решение . Обозначим через А - матрицу коэффициентов при неизвестных; X - матрицу-столбец неизвестных; B - матрицу-столбец свободных членов:

-1 3 0
3 -2 1
2 1 -1
Вектор B:
B T =(4,-3,-3)
С учетом этих обозначений данная система уравнений принимает следующую матричную форму: А*Х = B.
Если матрица А - невырожденная (ее определитель отличен от нуля, то она имеет обратную матрицу А -1 . Умножив обе части уравнения на А -1 , получим: А -1 *А*Х = А -1 *B, А -1 *А=Е.
Это равенство называется матричной записью решения системы линейных уравнений . Для нахождения решения системы уравнений необходимо вычислить обратную матрицу А -1 .
Система будет иметь решение, если определитель матрицы A отличен от нуля.
Найдем главный определитель.
∆=-1 (-2 (-1)-1 1)-3 (3 (-1)-1 0)+2 (3 1-(-2 0))=14
Итак, определитель 14 ≠ 0, поэтому продолжаем решение. Для этого найдем обратную матрицу через алгебраические дополнения.
Пусть имеем невырожденную матрицу А:
Вычисляем алгебраические дополнения.
A 1,1 =(-1) 1+1
-2 1
1 -1
∆ 1,1 =(-2 (-1)-1 1)=1
A 1,2 =(-1) 1+2
3 1
0 -1
∆ 1,2 =-(3 (-1)-0 1)=3
A 1,3 =(-1) 1+3
3 -2
0 1
∆ 1,3 =(3 1-0 (-2))=3
A 2,1 =(-1) 2+1
3 2
1 -1
∆ 2,1 =-(3 (-1)-1 2)=5
A 2,2 =(-1) 2+2
-1 2
0 -1
∆ 2,2 =(-1 (-1)-0 2)=1
A 2,3 =(-1) 2+3
-1 3
0 1
∆ 2,3 =-(-1 1-0 3)=1
A 3,1 =(-1) 3+1
3 2
-2 1
∆ 3,1 =(3 1-(-2 2))=7
·
4
-3
-3
X=1/14
-3))
Главный определитель
∆=4 (0 1-3 (-2))-2 (1 1-3 (-1))+0 (1 (-2)-0 (-1))=16
Транспонированная матрица
∆ 1,1 =(0 1-(-2 3))=6
A 1,2 =(-1) 1+2
1 3
-1 1
∆ 1,2 =-(1 1-(-1 3))=-4
A 1,3 =(-1) 1+3
1 0
-1 -2
∆ 1,3 =(1 (-2)-(-1 0))=-2
A 2,1 =(-1) 2+1
2 0
-2 1
∆ 2,1 =-(2 1-(-2 0))=-2
A 2,2 =(-1) 2+2
4 0
-1 1
∆ 2,2 =(4 1-(-1 0))=4
A 2,3 =(-1) 2+3
4 2
-1 -2
∆ 2,3 =-(4 (-2)-(-1 2))=6
A 3,1 =(-1) 3+1
2 0
0 3
∆ 3,1 =(2 3-0 0)=6
A 3,2 =(-1) 3+2
4 0
1 3
∆ 3,2 =-(4 3-1 0)=-12
A 3,3 =(-1) 3+3 1/16
6 -4 -2
-2 4 6
6 -12 -2
E=A*A -1 =
(4 6)+(1 (-2))+(-1 6) (4 (-4))+(1 4)+(-1 (-12)) (4 (-2))+(1 6)+(-1 (-2))
(2 6)+(0 (-2))+(-2 6) (2 (-4))+(0 4)+(-2 (-12)) (2 (-2))+(0 6)+(-2 (-2))
(0 6)+(3 (-2))+(1 6) (0 (-4))+(3 4)+(1 (-12)) (0 (-2))+(3 6)+(1 (-2))

=1/16
16 0 0
0 16 0
0 0 16
A*A -1 =
1 0 0
0 1 0
0 0 1

Пример №7 . Решение матричных уравнений.
Обозначим:

A =
3 0 5
2 1 4
-1 3 0
Алгебраические дополнения
A 1,1 = (-1) 1+1
1 3
4 0
∆ 1,1 = (1*0 - 4*3) = -12
A 1,2 = (-1) 1+2
0 3
5 0
∆ 1,2 = -(0*0 - 5*3) = 15
A 1,3 = (-1) 1+3
0 1
5 4
∆ 1,3 = (0*4 - 5*1) = -5
A 2,1 = (-1) 2+1
2 -1
4 0
∆ 2,1 = -(2*0 - 4*(-1)) = -4
A 2,2 = (-1) 2+2
3 -1
5 0
∆ 2,2 = (3*0 - 5*(-1)) = 5
A 2,3 = (-1) 2+3
3 2
5 4
∆ 2,3 = -(3*4 - 5*2) = -2
A 3,1 = (-1) 3+1
2 -1
1 3
∆ 3,1 = (2*3 - 1*(-1)) = 7
· 1/-1
-12 15 -5
-4 5 -2
7 -9 3
= Вектор B:
B T =(31,13,10)

X T =(4.05,6.13,7.54)
x 1 = 158 / 39 =4.05
x 2 = 239 / 39 =6.13
x 3 = 294 / 39 =7.54
Проверка .
-2 4.05+-1 6.13+6 7.54=31
1 4.05+-1 6.13+2 7.54=13
2 4.05+4 6.13+-3 7.54=10

Пример №9 . Обозначим через А - матрицу коэффициентов при неизвестных; X - матрицу-столбец неизвестных; B - матрицу-столбец свободных членов:

-2 1 6
1 -1 2
2 4 -3
Вектор B:
B T =(31,13,10)

X T =(5.21,4.51,6.15)
x 1 = 276 / 53 =5.21
x 2 = 239 / 53 =4.51
x 3 = 326 / 53 =6.15
Проверка .
-2 5.21+1 4.51+6 6.15=31
1 5.21+-1 4.51+2 6.15=13
2 5.21+4 4.51+-3 6.15=10

Пример №10 . Решение матричных уравнений.
Обозначим:

Алгебраические дополнения
A 11 = (-1) 1+1 ·-3 = -3; A 12 = (-1) 1+2 ·3 = -3; A 21 = (-1) 2+1 ·1 = -1; A 22 = (-1) 2+2 ·2 = 2;
Обратная матрица A -1 .
· 1/-9
-3 -3
-1 2
=
1 -2
1 1
Ответ:
X =
1 -2
1 1

Пусть имеется квадратная матрица n-го порядка

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е — единичная матрица n-го порядка.

Единичная матрица — такая квадратная матрица, у которой все элементы по главной диагонали, проходящей от левого верхнего угла к правому нижнему углу, — единицы, а остальные — нули, например:

Обратная матрица может существовать только для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.

Теорема условия существования обратной матрицы

Для того чтобы матрица имела обратную матрицу необходимо и достаточно, чтобы она была невырожденной.

Матрица А = (А1, А2,...А n) называется невырожденной , если векторы-столбцы являются линейно независимыми. Число линейно независимых векторов-столбцов матрицы называется рангом матрицы . Поэтому можно сказать, что для того, чтобы существовала обратная матрица, необходимо и достаточно, чтобы ранг матрицы равнялся ее размерности, т.е. r = n.

Алгоритм нахождения обратной матрицы

  1. Записать в таблицу для решения систем уравнений методом Гаусса матрицу А и справа (на место правых частей уравнений) приписать к ней матрицу Е.
  2. Используя преобразования Жордана, привести матрицу А к матрице, состоящей из единичных столбцов; при этом необходимо одновременно преобразовать матрицу Е.
  3. Если необходимо, то переставить строки (уравнения) последней таблицы так, чтобы под матрицей А исходной таблицы получилась единичная матрица Е.
  4. Записать обратную матрицу А -1 , которая находится в последней таблице под матрицей Е исходной таблицы.
Пример 1

Для матрицы А найти обратную матрицу А -1

Решение: Записываем матрицу А и справа приписываем единичную матрицу Е. Используя преобразования Жордана, приводим матрицу А к единичной матрице Е. Вычисления приведены в таблице 31.1.

Проверим правильность вычислений умножением исходной матрицы А и обратной матрицы А -1 .

В результате умножения матриц получилась единичная матрица. Следовательно, вычисления произведены правильно.

Ответ:

Решение матричных уравнений

Матричные уравнения могут иметь вид:

АХ = В, ХА = В, АХВ = С,

где А,В,С — задаваемые матрицы, Х- искомая матрица.

Матричные уравнения решаются с помощью умножения уравнения на обратные матрицы.

Например, чтобы найти матрицу из уравнения , необходимо умножить это уравнение на слева.

Следовательно, чтобы найти решение уравнения , нужно найти обратную матрицу и умножить ее на матрицу , стоящие в правой части уравнения.

Аналогично решаются другие уравнения.

Пример 2

Решить уравнение АХ = В, если

Решение : Так как обратная матрица равняется (см. пример 1)

Матричный метод в экономическом анализе

Наряду с другими в находят применение также матричные методы . Эти методы базируются на линейной и векторно-матричной алгебре. Такие методы применяются для целей анализа сложных и многомерных экономических явлений. Чаще всего эти методы используются при необходимости сравнительной оценки функционирования организаций и их структурных подразделений.

В процессе применения матричных методов анализа можно выделить несколько этапов.

На первом этапе осуществляется формирование системы экономических показателей и на ее основе составляется матрица исходных данных , которая представляет собой таблицу, в которой по ее отдельным строкам показываются номера систем (i = 1,2,....,n) , а по вертикальным графам — номера показателей (j = 1,2,....,m) .

На втором этапе по каждой вертикальной графе выявляется наибольшее из имеющихся значений показателей, которое и принимается за единицу.

После этого все суммы, отраженные в данной графе делят на наибольшее значение и формируется матрица стандартизированных коэффициентов .

На третьем этапе все составные части матрицы возводят в квадрат. Если они имеют различную значимость, то каждому показателю матрицы присваивается определенный весовой коэффициент k . Величина последнего определяется экспертным путем.

На последнем, четвертом этапе найденные величины рейтинговых оценок R j группируются в порядке их увеличения или уменьшения.

Изложенные матричные методы следует использовать, например, при сравнительном анализе различных инвестиционных проектов, а также при оценке других экономических показателей деятельности организаций.

Уравнения вообще, линейные алгебраические уравнения и их системы, а также методы их решения занимают в математике, как теоретической, так и прикладной, особое место.

Это связано с тем обстоятельством, что подавляющее большинство физических, экономических, технических и даже педагогических задач могут быть описаны и решены с помощью разнообразных уравнений и их систем. В последнее время особую популярность среди исследователей, ученых и практиков приобрело математическое моделирование практически во всех предметных областях, что объясняется очевидными его преимуществами перед другими известными и апробированными методами исследования объектов различной природы, в частности, так называемых, сложных систем. Существует великое многообразие различных определений математической модели, данных учеными в разные времена, но на наш взгляд, самое удачное, это следующее утверждение. Математическая модель – это идея, выраженная уравнением. Таким образом, умение составлять и решать уравнения и их системы – неотъемлемая характеристика современного специалиста.

Для решения систем линейных алгебраических уравнений наиболее часто используются методы: Крамера, Жордана-Гаусса и матричный метод.

Матричный метод решения - метод решения с помощью обратной матрицы систем линейных алгебраических уравнений с ненулевым определителем.

Если выписать коэффициенты при неизвестных величинах xi в матрицу A, неизвестные величины собрать в вектор столбец X, а свободные члены в вектор столбец B, то систему линейных алгебраических уравнений можно записать в виде следующего матричного уравнения A · X = B, которое имеет единственное решение только тогда, когда определитель матрицы A не будет равен нулю. При этом решение системы уравнений можно найти следующим способом X = A -1 · B , где A -1 - обратная матрица.

Матричный метод решения состоит в следующем.

Пусть дана система линейных уравнений с n неизвестными:

Её можно переписать в матричной форме: AX = B , где A - основная матрица системы, B и X - столбцы свободных членов и решений системы соответственно:

Умножим это матричное уравнение слева на A -1 - матрицу, обратную к матрице A : A -1 (AX ) = A -1 B

Так как A -1 A = E , получаем X = A -1 B . Правая часть этого уравнения даст столбец решений исходной системы. Условием применимости данного метода (как и вообще существования решения неоднородной системы линейных уравнений с числом уравнений, равным числу неизвестных) является невырожденность матрицы A . Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A : detA ≠ 0.

Для однородной системы линейных уравнений, то есть когда вектор B = 0 , действительно обратное правило: система AX = 0 имеет нетривиальное (то есть не нулевое) решение только если detA = 0. Такая связь между решениями однородных и неоднородных систем линейных уравнений носит название альтернативы Фредгольма.

Пример решения неоднородной системы линейных алгебраических уравнений .

Убедимся в том, что определитель матрицы, составленный из коэффициентов при неизвестных системы линейных алгебраических уравнений не равен нулю.

Следующим шагом будет вычисление алгебраических дополнений для элементов матрицы, состоящей из коэффициентов при неизвестных. Они понадобятся для нахождения обратной матрицы.

Метод обратной матрицы не представляет ничего сложного, если знать общие принципы работы с матричными уравнениями и, конечно, уметь производить элементарные алгебраические действия.

Решение системы уравнений методом обратной матрицы. Пример.

Удобнее всего постигать метод обратной матрицы на наглядном примере. Возьмем систему уравнений:

Первый шаг, который необходимо сделать для решения этой системы уравнений - найти определитель. Поэтому преобразим нашу систему уравнений в следующую матрицу:

И найдем нужный определитель:

Формула, использующаяся для решения матричных уравнений, выглядит следующим образом:

Таким образом, для вычисления Х нам необходимо определить значение матрицы А-1 и умножить его на b. В этом нам поможет другая формула:

Ат в данном случае будет транспонированной матрицей - то есть, той же самой, исходной, но записанной не строками, а столбцами.

Не следует забывать о том, что метод обратной матрицы , как и метод Крамера, подходит только для систем, в которых определитель больше или меньше нуля. Если же определитель равен нулю, нужно использовать метод Гаусса.

Следующий шаг - составление матрицы миноров, представляющей собой такую схему:

В итоге мы получили три матрицы - миноров, алгебраических дополнений и транспонированную матрицу алгебраических дополнений. Теперь можно переходить к собственно составлению обратной матрицы. Формулу мы уже знаем. Для нашего примера это будет выглядеть так.